Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113241, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819759

RESUMEN

Lysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.


Asunto(s)
Mitocondrias , Succinato-CoA Ligasas , Humanos , Animales , Ratones , Mitocondrias/metabolismo , Acilcoenzima A/metabolismo , Succinato-CoA Ligasas/genética , Succinato-CoA Ligasas/metabolismo , Ratones Noqueados
2.
Genes (Basel) ; 14(10)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37895219

RESUMEN

Mesenchymal stem cells (MSC) are multipotent stem cells that can differentiate into multiple cell types, including osteoblasts, chondrocytes, and adipocytes. Osteoblast differentiation is reduced during osteoporosis development, resulting in reduced bone formation. Further, MSC isolated from different donors possess distinct osteogenic capacity. In this study, we used single-cell multiomic analysis to profile the transcriptome and epigenome of MSC from four healthy donors. Data were obtained from ~1300 to 1600 cells for each donor. These cells were clustered into four groups, indicating that MSC from different donors have distinct chromatin accessible regulatory elements for regulating gene expression. To investigate the mechanism by which MSC undergo osteogenic differentiation, we used the chromatin accessibility data from the single-cell multiome data to identify individual-specific enhancer-promoter pairs and evaluated the expression levels and activities of the transcriptional regulators. The MSC from four donors showed distinct differentiation potential into osteoblasts. MSC of donor 1 showed the largest average motif activities, indicating that MSC from donor 1 was most likely to differentiate into osteoblasts. The results of our validation experiments were consistent with the bioinformatics prediction. We also tested the enrichment of genome-wide association study (GWAS) signals of several musculoskeletal disease traits in the patient-specific chromatin accessible regions identified in the single-cell multiome data, including osteoporosis, osteopenia, and osteoarthritis. We found that osteoarthritis-associated variants were only enriched in the regions identified from donor 4. In contrast, osteoporosis and osteopenia variants were enriched in regions from donor 1 and least enriched in donor 4. Since osteoporosis and osteopenia are related to the density of bone cells, the enrichment of variants from these traits should be correlated with the osteogenic potential of MSC. In summary, this study provides large-scale data to link regulatory elements with their target genes to study the regulatory relationships during the differentiation of mesenchymal stem cells and provide a deeper insight into the gene regulatory mechanism.


Asunto(s)
Enfermedades Óseas Metabólicas , Células Madre Mesenquimatosas , Osteoartritis , Osteoporosis , Humanos , Osteogénesis/genética , Multiómica , Estudio de Asociación del Genoma Completo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/genética , Enfermedades Óseas Metabólicas/metabolismo , Osteoartritis/metabolismo , Cromatina/metabolismo
3.
Bone Res ; 11(1): 7, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650133

RESUMEN

Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.

4.
Biochim Biophys Acta Gene Regul Mech ; 1864(3): 194691, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33556624

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with an estimated global prevalence of 1 in 4 individuals. Aberrant transcriptional control of gene expression is central to the pathophysiology of metabolic diseases. However, the molecular mechanisms leading to gene dysregulation are not well understood. Histone modifications play important roles in the control of transcription. Acetylation of histone 3 at lysine 9 (H3K9ac) is associated with transcriptional activity and is implicated in transcript elongation by controlling RNA polymerase II (RNAPII) pause-release. Hence, changes in this histone modification may shed information on novel pathways linking transcription control and metabolic dysfunction. Here, we carried out genome-wide analysis of H3K9ac in the liver of mice fed a control or a high-fat diet (an animal model of NAFLD), and asked whether this histone mark associates with changes in gene expression. We found that over 70% of RNAPII peaks in promoter-proximal regions overlapped with H3K9ac, consistent with a role of H3K9ac in the regulation of transcription. When comparing high-fat with control diet, approximately 17% of the differentially expressed genes were associated with changes in H3K9ac in their promoters, showing a strong correlation between changes in H3K9ac signal and gene expression. Overall, our data indicate that in response to a high-fat diet, dysregulated gene expression of a subset of genes may be attributable to changes in transcription elongation driven by H3K9ac. Our results point at an added mechanism of gene regulation that may be important in the development of metabolic diseases.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regiones Promotoras Genéticas , Elongación de la Transcripción Genética/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Histonas/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología
5.
Oncogene ; 40(7): 1332-1346, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420376

RESUMEN

Chromatin accessibility is central to basal and inducible gene expression. Through ATAC-seq experiments in estrogen receptor-positive (ER+) breast cancer cell line MCF-7 and integration with multi-omics data, we found estradiol (E2) induced chromatin accessibility changes in a small number of breast cancer-relevant E2-regulated genes. As expected, open chromatin regions associated with E2-inducible gene expression showed enrichment of estrogen response element (ERE) and those associated with E2-repressible gene expression were enriched for ERE, PBX1, and PBX3. While a significant number of open chromatin regions showed pioneer factor FOXA1 occupancy in the absence of E2, E2-treatment further enhanced FOXA1 occupancy suggesting that ER-E2 enhances chromatin occupancy of FOXA1 to a subset of E2-regulated genes. Surprisingly, promoters of 80% and enhancers of 60% of E2-inducible genes displayed closed chromatin configuration both in the absence and presence of E2. Integration of ATAC-seq data with ERα ChIP-seq data revealed that ~40% ERα binding sites in the genome are found in chromatin regions that are not accessible as per ATAC-seq. Such ERα binding regions were enriched for binding sites of multiple nuclear receptors including ER, ESRRB, ERRγ, COUP-TFII (NR2F2), RARα, EAR2 as well as traditional pioneer factors FOXA1 and GATA3. Similar data were also obtained when ERα ChIP-seq data were integrated with MNase-seq and DNase-seq data sets. In summation, our results reveal complex mechanisms of ER-E2 interaction with nucleosomes. Notably, "closed chromatin" configuration as defined by ATAC-seq or by other techniques is not necessarily associated with lack of gene expression and technical limitations may preclude ATAC-seq to demonstrate accessibility of chromatin regions that are bound by ERα.


Asunto(s)
Neoplasias de la Mama/genética , Estradiol/genética , Receptor alfa de Estrógeno/genética , Factor de Transcripción GATA3/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias de la Mama/patología , Factor de Transcripción COUP II/genética , Línea Celular Tumoral , Cromatina/genética , Estradiol/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Regiones Promotoras Genéticas/genética , Receptores de Estrógenos/genética , Receptor alfa de Ácido Retinoico/genética
6.
Nat Commun ; 11(1): 4882, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985505

RESUMEN

T helper cell differentiation requires lineage-defining transcription factors and factors that have shared expression among multiple subsets. BATF is required for development of multiple Th subsets but functions in a lineage-specific manner. BATF is required for IL-9 production in Th9 cells but in contrast to its function as a pioneer factor in Th17 cells, BATF is neither sufficient nor required for accessibility at the Il9 locus. Here we show that STAT5 is the earliest factor binding and remodeling the Il9 locus to allow BATF binding in both mouse and human Th9 cultures. The ability of STAT5 to mediate accessibility for BATF is observed in other Th lineages and allows acquisition of the IL-9-secreting phenotype. STAT5 and BATF convert Th17 cells into cells that mediate IL-9-dependent effects in allergic airway inflammation and anti-tumor immunity. Thus, BATF requires the STAT5 signal to mediate plasticity at the Il9 locus.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Interleucina-9/inmunología , Factor de Transcripción STAT5/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Femenino , Humanos , Interleucina-9/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT5/genética , Linfocitos T Colaboradores-Inductores/citología , Células Th17/inmunología
7.
Artículo en Inglés | MEDLINE | ID: mdl-32850739

RESUMEN

Expression quantitative trait loci (eQTL) analysis is useful for identifying genetic variants correlated with gene expression, however, it cannot distinguish between causal and nearby non-functional variants. Because the majority of disease-associated SNPs are located in regulatory regions, they can impact allele-specific binding (ASB) of transcription factors and result in differential expression of the target gene alleles. In this study, our aim was to identify functional single-nucleotide polymorphisms (SNPs) that alter transcriptional regulation and thus, potentially impact cellular function. Here, we present regSNPs-ASB, a generalized linear model-based approach to identify regulatory SNPs that are located in transcription factor binding sites. The input for this model includes ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing) raw read counts from heterozygous loci, where differential transposase-cleavage patterns between two alleles indicate preferential transcription factor binding to one of the alleles. Using regSNPs-ASB, we identified 53 regulatory SNPs in human MCF-7 breast cancer cells and 125 regulatory SNPs in human mesenchymal stem cells (MSC). By integrating the regSNPs-ASB output with RNA-seq experimental data and publicly available chromatin interaction data from MCF-7 cells, we found that these 53 regulatory SNPs were associated with 74 potential target genes and that 32 (43%) of these genes showed significant allele-specific expression. By comparing all of the MCF-7 and MSC regulatory SNPs to the eQTLs in the Genome-Tissue Expression (GTEx) Project database, we found that 30% (16/53) of the regulatory SNPs in MCF-7 and 43% (52/122) of the regulatory SNPs in MSC were also in eQTL regions. The enrichment of regulatory SNPs in eQTLs indicated that many of them are likely responsible for allelic differences in gene expression (chi-square test, p-value < 0.01). In summary, we conclude that regSNPs-ASB is a useful tool for identifying causal variants from ATAC-seq data. This new computational tool will enable efficient prioritization of genetic variants identified as eQTL for further studies to validate their causal regulatory function. Ultimately, identifying causal genetic variants will further our understanding of the underlying molecular mechanisms of disease and the eventual development of potential therapeutic targets.

8.
Genome Biol ; 21(1): 169, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646524

RESUMEN

BACKGROUND: Early human heart and brain development simultaneously occur during embryogenesis. Notably, in human newborns, congenital heart defects strongly associate with neurodevelopmental abnormalities, suggesting a common gene or complex underlying both cardiogenesis and neurogenesis. However, due to lack of in vivo studies, the molecular mechanisms that govern both early human heart and brain development remain elusive. RESULTS: Here, we report ARID1A, a DNA-binding subunit of the SWI/SNF epigenetic complex, controls both neurogenesis and cardiogenesis from human embryonic stem cells (hESCs) through distinct mechanisms. Knockout-of-ARID1A (ARID1A-/-) leads to spontaneous differentiation of neural cells together with globally enhanced expression of neurogenic genes in undifferentiated hESCs. Additionally, when compared with WT hESCs, cardiac differentiation from ARID1A -/- hESCs is prominently suppressed, whereas neural differentiation is significantly promoted. Whole genome-wide scRNA-seq, ATAC-seq, and ChIP-seq analyses reveal that ARID1A is required to open chromatin accessibility on promoters of essential cardiogenic genes, and temporally associated with key cardiogenic transcriptional factors T and MEF2C during early cardiac development. However, during early neural development, transcription of most essential neurogenic genes is dependent on ARID1A, which can interact with a known neural restrictive silencer factor REST/NRSF. CONCLUSIONS: We uncover the opposite roles by ARID1A to govern both early cardiac and neural development from pluripotent stem cells. Global chromatin accessibility on cardiogenic genes is dependent on ARID1A, whereas transcriptional activity of neurogenic genes is under control by ARID1A, possibly through ARID1A-REST/NRSF interaction.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Corazón/embriología , Células Madre Embrionarias Humanas/fisiología , Neurogénesis , Factores de Transcripción/fisiología , Línea Celular , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Humanos , RNA-Seq , Análisis de Secuencia de ARN , Análisis de la Célula Individual
9.
Stem Cells Dev ; 28(9): 620-631, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808255

RESUMEN

Bone marrow-derived mesenchymal stem cells (MSCs) improve cardiac function after ischemia/reperfusion injury, in part, due to the release of cytoprotective paracrine factors. Toll-like receptor 4 (TLR4) is expressed in MSCs and regulates the expression of cytoprotective factors, cytokines, and chemokines. Lipopolysaccharide (LPS) stimulation of TLR4 activates two distinct signaling pathways that are either MyD88 dependent or MyD88 independent/TIR-domain-containing adapter-inducing interferon-ß (TRIF) dependent. While it was reported previously that LPS treatment improved MSC-mediated cardioprotection, the mechanism underlying such improved effect remains unknown. To study the role of MyD88 signaling in MSC cardioprotective activity, wild type (WT) and MyD88-/- MSCs were treated with LPS (200 ng/mL) for 24 h. WT and MyD88-/- MSCs with or without LPS pretreatment were infused into the coronary circulation of isolated mouse hearts (Langendorff model) and then subjected to ischemia (25 min) and reperfusion (50 min). Saline served as a negative control. Both untreated and LPS-pretreated WT MSCs significantly improved postischemic recovery of myocardial function of isolated mouse hearts, as evidenced by improved left ventricular developed pressure and ventricular contractility assessment (ie, the rate of left ventricle pressure change over time, ± dp/dt). LPS-pretreated WT MSCs conferred better cardiac function recovery than untreated MSCs; however, such effect of LPS was abolished when using MyD88-/- MSCs. In addition, LPS stimulated stat3 activity in WT MSCs, but not MyD88-/- MSCs. stat3 small interfering RNA abolished the effect of LPS in improving the cardioprotection of WT MSCs. In conclusion, this study demonstrates that LPS improves MSC-mediated cardioprotection by MyD88-dependent activation of stat3.


Asunto(s)
Lipopolisacáridos/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Factor 88 de Diferenciación Mieloide/genética , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/terapia , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Cardiotónicos/farmacología , Células Cultivadas , Citoprotección/efectos de los fármacos , Citoprotección/genética , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Corazón/efectos de los fármacos , Lipopolisacáridos/uso terapéutico , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Chemosphere ; 163: 209-216, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27529385

RESUMEN

The transfer of invasive organisms by ballast-water discharge has become a growing concern. UV treatment has become an attractive ballast water treatment technology due to its effectiveness, no harmful disinfection byproducts and easiness to handle. Two robust algae strains Microcystis viridis and Tetraselmis suecica were selected as indicator organisms to determine efficiency of medium-pressure (MP) UV-treatment on ballast water. Inactivation and potential repair of these two algae strains following MP UV irradiation were assessed under various turbidity, total organic carbon (TOC) and salinity conditions. The investigated range of UV doses was from 25 to 500 mJ/cm(2). For M. viridis, results indicated that disinfection efficiency was negatively correlated with all of these three factors at low doses (25-200 mJ/cm(2)). Photoreactivation and dark repair were promoted at high TOC levels (6-15 mg/L) with about 6-25% higher repair levels compared with those in distilled water, whereas no significant impacts were identified for turbidity and salinity on both of the photoreactivation and dark repair. For T. suecica, increased turbidity and TOC levels both hindered the performance of UV irradiation at high doses (200-500 mJ/cm(2)). Suppressive effects on photoreactivation and dark repair were consistently observed with changes of all of the three factors. In conclusion, generally these three factors resulted in repressive effects on UV disinfection efficiency, and TOC played a more significant role in the levels of reactivation than the other two. The responses of T. suecica to these three factors were more sensitive than M. viridis.


Asunto(s)
Chlorophyta/efectos de la radiación , Microcystis/efectos de la radiación , Purificación del Agua/instrumentación , Agua/química , Desinfección/instrumentación , Desinfección/métodos , Presión , Salinidad , Rayos Ultravioleta , Purificación del Agua/métodos , Calidad del Agua
12.
Rev Environ Health ; 31(1): 71-4, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943602

RESUMEN

Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.


Asunto(s)
Peróxido de Hidrógeno/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Reactores Biológicos , Cinética , Oxidación-Reducción , Fotólisis , Proyectos Piloto
15.
Chemosphere ; 136: 118-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25966330

RESUMEN

Three common virucidal techniques (chlorine, UV and UV/TiO2) were applied to inactivate virus (MS2 and Phi X174) in condensate water after the evaporation of source-separated urine for reclaimed water. The inactivation efficiencies were compared with the results of previous studies, with the emphasis on the analysis of water matrix effects. Results showed that all virus inactivation in condensate water were lower than the control (in sterilized DI water). As for UV/TiO2 disinfection, both nitrate and ammonia nitrogen could promote slightly viral inactivation, while the inhibition by urea was dominant. Similarly, ammonia nitrogen had greater impacts on chlorine disinfection than urea and nitrate. In contrast, all water matrices (urea, nitrate and ammonia nitrogen) had little influence on UV disinfection. Based on the findings in this study, UV disinfection could be recommended for disinfecting the reclaimed water from the evaporation of source-separated urine.


Asunto(s)
Desinfectantes/farmacología , Desinfección/métodos , Orina/química , Inactivación de Virus , Purificación del Agua/métodos , Cloro , Rayos Ultravioleta , Agua
16.
Appl Environ Microbiol ; 76(21): 7068-75, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20851976

RESUMEN

UV disinfection is highly effective against most pathogens, with the exception of the adenoviruses (AD). To date, many studies have focused on low-pressure (LP) UV inactivation of AD, but little is known about the effect of medium-pressure (MP) UV inactivation of AD. Despite numerous studies of LP UV inactivation of AD, extreme variabilities in the LP UV dose requirements of AD had been observed because of differing experimental conditions used, such as the types of cell lines used for AD enumeration. This study therefore investigates the effect of three different host cell lines (PLC/PRF/5, human embryonic kidney 293 [HEK293], and XP17BE) on the LP and MP UV dose requirements of AD serotype 5 (AD5), AD40, and AD41 under similar experimental settings. Results showed that for 4-log inactivation of AD, LP UV and MP UV doses needed to be in the ranges of 123 to 182 mJ/cm² and 65 to 90 mJ/cm², respectively, when HEK293 and PLC/PRF/5 cells were used for enumeration. The UV doses required for MP UV inactivation of AD were significantly lower than those required for LP UV inactivation (P value < 0.05). When different cell lines were used for enumeration, UV dose requirements for AD differed. AD were portrayed to be most susceptible to UV (LP UV doses of <57 mJ/cm² and MP UV doses of <42 mJ/cm² for 4-log AD inactivation) when the XP17BE cells were used as the host cell. The use of different cell lines for AD enumeration affected LP UV dose results more significantly than MP UV dose results (P value < 0.05). Cell line variability factors for LP UV disinfection (CL(LP)) and MP UV disinfection (CL(MP)) for AD5, AD40, and AD41 enumerated with HEK293, PLC/PRF/5, and XP17BE cells were in the ranges of 1.0 to 3.2 and 1.0 to 2.5, respectively.


Asunto(s)
Adenoviridae/efectos de la radiación , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Línea Celular/virología , Línea Celular Tumoral/virología , Supervivencia Celular/efectos de la radiación , Desinfección/métodos , Relación Dosis-Respuesta en la Radiación , Células HEK293/virología , Humanos
17.
J Microbiol Methods ; 58(3): 321-5, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15279936

RESUMEN

The U.S. Environmental Protection Agency has developed method 1623 for simultaneous detection of Cryptosporidium oocysts and Giardia cysts in water. Method 1623 includes four major steps: filtration, immunomagnetic separation (IMS), fluorescent antibody (FA) staining and microscopic examination. It was noted that the recovery levels following IMS-FA and FA staining were high, averaging more than 92.0% and 89.0% for C. parvum oocysts and G. lamblia cysts, respectively. In contrast, when the filtration step was incorporated, the recovery level of C. parvum oocysts declined significantly to 18.1% in seeded tap water, while a relatively high recovery level of 77.2% for G. lamblia cysts could still be achieved. Further study indicated that the recovery level of C. parvum oocysts could be enhanced significantly when an appropriate amount of silica particles was added to a water sample. The recovery level of C. parvum oocysts was affected by particle size and concentration. The optimal silica particle size was determined to be within the range of 5-40 microm, and the corresponding optimal silica concentration was 1.42 g for 10-l tap water. When both G. lamblia cysts and C. parvum oocysts were spiked into the tap water sample containing the optimum amount of silica particles, the average recovery levels of oocysts and cysts were 82.7% and 75.4%, respectively. The results obtained clearly suggested that addition of an appropriate amount of silica particles could improve the recovery level of C. parvum oocysts significantly and yet there was no noticeable deleterious effect on the recovery level of G. lamblia cysts. Further study indicated that the rotation time in the IMS procedure using the Dynal GC-Combo IMS kit (which was recommended in method 1623) was important for G. lamblia cyst detection. In contrast, the recovery level of C. parvum oocysts was not affected by the rotation time. Furthermore, it was found that the recovery levels of C. parvum oocysts using methods 1622 and 1623 were quite close although different IMS kits were used in the two methods.


Asunto(s)
Cryptosporidium parvum/aislamiento & purificación , Filtración/métodos , Giardia lamblia/aislamiento & purificación , Agua/parasitología , Animales , Técnica del Anticuerpo Fluorescente , Separación Inmunomagnética , Oocistos/aislamiento & purificación , Gel de Sílice , Dióxido de Silicio
18.
Wei Sheng Wu Xue Bao ; 43(4): 453-9, 2003 Aug.
Artículo en Chino | MEDLINE | ID: mdl-16276919

RESUMEN

A methyl parathion degradation enzyme, or methyl parathion hydrolase (MPH, EC 3.1.8.1), locating in the soluble intracellular fraction of Pseudomonas sp. WBC-3, was purified 49.1-fold to homogeneity by one-step ion exchange chromatography. The physical and chemical properties of the purified MPH were studied. The purified MPH displayed relatively broad optimal temperature around 40 degrees. The activity of MPH was affected by pH and the optimal pH was 11.0. Cd2+ and Fe2+ could enhance the catalytic efficiency of MPH while Hg2+, Zn2+, Al3+ and Bi3+ showed inhibition effect. With methyl parathion as the optimal substrate, the Km was 0.0807mmol/L and the kcat was 2.1 x 10(6) min(-1). In addition, the comparison of native and subunit molecular weights of MPH suggested that this enzyme was a monomer of approximate 34kD.


Asunto(s)
Monoéster Fosfórico Hidrolasas/química , Pseudomonas/química , Pseudomonas/enzimología , Estabilidad de Enzimas , Cinética , Metil Paratión/metabolismo , Peso Molecular , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/metabolismo , Pseudomonas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA